GaAs MMIC Reliability Assurance Guideline
for Space Applications

Contents
Note: The following links are Adobe Acrobat PDF files.

Download complete document in PDF format (1.3Mb)

CHAPTER 1. INTRODUCTION (R. Shaw)

I. Why GaAs is Used 1
II. Hybrid and Monolithic Integrated Circuits 2
III. Reliability and Quality Assurance 3
Additional Reading 5

CHAPTER 2. RELIABILITY OVERVIEW (R. Shaw)

I. Failure 7
A. Physical Failure Mechanisms 7
B. Radiation Failure Mechanisms 8
II. Quantifying Reliability 8
III. GaAs Device Reliability 11
Additional Reading 14

CHAPTER 3. GaAs PROPERTIES, DEVICE STRUCTURES AND CIRCUITS

 I. GaAs Material Properties 16 (S. Kayali)
A. Energy Band Structure 16
B.  Mobility and Drift Velocity 18
C. Semi-Insulating GaAs 19
D. Crystal Defects 20
E.  Thermal Characteristics 22
References 23
Additional Reading 23
 II. Metal–Semiconductor Junctions 24 (G.E. Ponchak)
A. Junction Physics 24
B. Junction Characteristics 27
C. Device Structures 30
D. Reliability 32
Reference 33
Additional Reading 33
III. Metal–Semiconductor Field-Effect Transistors 34 (G.E. Ponchak)
A. Device Physics 34
B.  Reliability 37
Additional Reading 38
 IV. HEMTs and PHEMTs 39 (L. Aucoin)
A. Device Physics 39
B.  Reliability 42
Reference 43
Additional Reading 43
 V. Heterojunction Bipolar Transistors 44 (Y. C. Chou and R. Ferro)
A. Device Structure 45
B.  Operating Principles 46
C. Reliability 47
References 49
 VI. PIN Diodes 51 (G. E. Ponchak)
A. Device Physics 51
B.  Reliability 54
References 55
 VII. Passive Elements 56 (S. Kayali and G. E. Ponchak)
A. Resistors 56
B.  Capacitors 58
C. Inductors 59
D. Transmission Lines 60
E.  Via Holes 61
F.  Air Bridges 62
Reference 63
Additional Reading 63
VIII. Basic Process Description 64 (S. Kayali)
A. Typical Ion-Implanted MESFET Process Flow 64
B.  Typical HEMT/PHEMT Process Flow 68
C. Typical HBT Process Flow 70
Additional Reading 72
 IX. Monolithic Microwave  Integrated Circuits 74 (A. N. Downey, G. E. Ponchak, and R. R. Romanofsky)
A. General Description 74
B. Amplifiers 76
C. Mixers 80
D. Oscillators 82
E.  Phase Shifters 85
References 87

CHAPTER 4. BASIC FAILURE MODES & MECHANISMS (S. Kayali)

I. General Failure Modes 89
A. Degradation in IDSS 90
B.  Degradation in Gate Leakage Current 90
C. Degradation in Pinch-Off Voltage 90
D. Increase in Drain-to-Source Resistance 90
E.  Degradation in RF Performance 91
II. Failure Mechanisms 91
A. Material-Interaction-Induced Failure Mechanisms 91
B.  Stress-Induced Failure Mechanisms 95
C. Mechanically Induced Failure Mechanisms 101
D. Environmentally Induced Failure Mechanisms 102
References 106
CHAPTER 5. DEVICE MODELING 109 (W. Y. Jiang)
I. Types of Models 109
II. Equivalent Circuit 110
A. MESFET Equivalent Circuit 110
B. HEMT Equivalent Circuit 113
III. Characterization and Parameter Extraction 114
A. DC Characterization and Parameter Extraction 114
B.  RF Characterization and Parameter Extraction 114
C. Large-Signal Characterization and Parameter Extraction 114
D. Noise Figure Characterization 116
IV. Modeling Software 117
A. Device Modeling Software 117
B.  Processing Simulation Software 118
V. Model Sensitivity 119
A. Sensitivity Analysis 119
B.  Temperature Effect 119
C. DC Bias Effect 120
D. Statistical Analysis 121
References 121

CHAPTER 6. MMIC DESIGN METHODOLOGIES & VERIFICATION 123 (C. Chen, S. Kayali, E. Rezek, and T. Trinh)

I. Foundry Documentation 123
II. MMIC Simulation 124
III. MMIC Layout 125
IV. Typical Design Methodology 126
V. Design for Reliability and Manufacturability 127
Additional Reading 128

CHAPTER 7. TESTABILITY & TEST STRUCTURES 130 (R. Shaw)

I. Test Structures 130
A. Technology Characterization Vehicle 130
B.  Standard Evaluation Circuits 131
C. Parametric Monitors 132
II. Testability 134
A. Wafer-Level Testability 134
B.  MMIC-Level Tests 135
Additional Reading 136

CHAPTER 8. QUALIFICATION METHODOLOGIES 137  (S. Kayali, G. E. Ponchak, and R. Shaw)

I. Introduction 137
II. Company Certification 139
A. Technology Review Board 139
B.  Conversion of Customer Requirements 141
C. Manufacturing Control Procedures 142
D. Equipment Calibration and Maintenance 143
E.  Training Programs 143
F.  Corrective Action Program 143
G. Self-Audit Program 143
H. Electrostatic Discharge Handling Program 144
I.   Cleanliness and Atmospheric Controls 144  J. Record Retention 144
J.   Inventory Control 145
K.  Statistical Process Control 145
III. Process Qualification 146
A. Process Step Development 149
B.  Wafer Fabrication Documentation 149
C. Parametric Monitors 149
D. Design-Rule and Model Development 151
E.  Layout-Rule Development 151
F.  Wafer-Level Tests 151
G. TCV and SEC Tests 151
H. Starting Materials Control 152
I.   Electrostatic Discharge Characterization and Sensitivity 152
IV. Product Qualification 153
A. MMIC Design, Model, and Layout Verification 153
B.  Thermal Analysis and Characterization 154
C. Electrostatic Discharge Sensitivity Tests 154
D. Voltage Ramp 155
E.  Temperature Ramp and Step Stress 155
F.  High/Low Temperature Tests 155
V. Product Acceptance 155
A. Stabilization Bake 156
B.  SEM Analysis 163
C. Nondestructive Bond Pull Test 163
D. Visual Inspection 163
E.  IR Scan 164
F.  Temperature Cycling and Shock Screen 164
G. Mechanical Shock Screen 165
H. Constant Acceleration 165
I.   Particle Impact Noise Detection 165
J.   Burn-In 165
K.  Leak Test 166
L.  Radiographic 166
References 167
Additional Reading 167

CHAPTER 9. GaAs MMIC PACKAGING

 I. Introduction 170 (G. E. Ponchak)
A. Functions of Microwave Packages 172
B.  Types of Microwave Packages 176
Additional Reading 180
 II. Die Attachment 181 (G. E. Ponchak)
References 183
III. Flip-Chip Package 184 (R. N. Simons)
References 185
 IV. Multichip Module–Dielectric Package 187 (G. E. Ponchak)
References 189
 V. Plastic Package 190 (R. N. Simons)
References 192
VI. Package Resonance and Field Leakage 194 (R. N. Simons)
References 198
Additional Reading 199
 VII. Hydrogen Poisoning of GaAs MMICs in Hermetic Packages 200 (A. Immorlica and S. Kayali)
References 202

CHAPTER 10. RADIATION EFFECTS IN MMIC DEVICES 203 (C. Barnes and L. Selva)

I. Introduction 203
II. Radiation Environments and Sources 203
A. The Natural Space Radiation Environment 203
B.  Other Radiation Sources 207
C. Radiation Shielding 209
III. Radiation Effects in Semiconductor Devices 210
A. Ionizing Radiation Effects 210
B.  Displacement Damage Effects 216
C. Single Event Effects 219
IV. Radiation Testing 223
V. Radiation Effects in MMIC Devices and Circuits 227
A. Ionizing Radiation Effects 227
B.  Displacement Damage Effects 232
C. Single Event Effects 237
VI. Conclusions 239
References 240

ACRONYMS & SYMBOLS 244