GaAs MMIC Reliability
Assurance Guideline
for Space Applications
Contents
Note: The following links are Adobe Acrobat PDF files.Download complete document in PDF format (1.3Mb)
CHAPTER 1. INTRODUCTION (R. Shaw)
I. Why GaAs is Used 1II. Hybrid and Monolithic Integrated Circuits 2III. Reliability and Quality Assurance 3Additional Reading 5
CHAPTER 2. RELIABILITY OVERVIEW (R. Shaw)
I. Failure 7A. Physical Failure Mechanisms 7
B. Radiation Failure Mechanisms 8II. Quantifying Reliability 8III. GaAs Device Reliability 11Additional Reading 14
CHAPTER 3. GaAs PROPERTIES, DEVICE STRUCTURES AND CIRCUITS
I. GaAs Material Properties 16 (S. Kayali)A. Energy Band Structure 16
B. Mobility and Drift Velocity 18
C. Semi-Insulating GaAs 19
D. Crystal Defects 20
E. Thermal Characteristics 22
References 23
Additional Reading 23II. Metal–Semiconductor Junctions 24 (G.E. Ponchak)A. Junction Physics 24
B. Junction Characteristics 27
C. Device Structures 30
D. Reliability 32
Reference 33
Additional Reading 33III. Metal–Semiconductor Field-Effect Transistors 34 (G.E. Ponchak)A. Device Physics 34
B. Reliability 37
Additional Reading 38IV. HEMTs and PHEMTs 39 (L. Aucoin)A. Device Physics 39
B. Reliability 42
Reference 43
Additional Reading 43V. Heterojunction Bipolar Transistors 44 (Y. C. Chou and R. Ferro)A. Device Structure 45
B. Operating Principles 46
C. Reliability 47
References 49VI. PIN Diodes 51 (G. E. Ponchak)A. Device Physics 51
B. Reliability 54
References 55VII. Passive Elements 56 (S. Kayali and G. E. Ponchak)A. Resistors 56
B. Capacitors 58
C. Inductors 59
D. Transmission Lines 60
E. Via Holes 61
F. Air Bridges 62
Reference 63
Additional Reading 63VIII. Basic Process Description 64 (S. Kayali)A. Typical Ion-Implanted MESFET Process Flow 64
B. Typical HEMT/PHEMT Process Flow 68
C. Typical HBT Process Flow 70
Additional Reading 72IX. Monolithic Microwave Integrated Circuits 74 (A. N. Downey, G. E. Ponchak, and R. R. Romanofsky)A. General Description 74
B. Amplifiers 76
C. Mixers 80
D. Oscillators 82
E. Phase Shifters 85
References 87
CHAPTER 4. BASIC FAILURE MODES & MECHANISMS (S. Kayali)
I. General Failure Modes 89A. Degradation in IDSS 90
B. Degradation in Gate Leakage Current 90
C. Degradation in Pinch-Off Voltage 90
D. Increase in Drain-to-Source Resistance 90
E. Degradation in RF Performance 91II. Failure Mechanisms 91A. Material-Interaction-Induced Failure Mechanisms 91
B. Stress-Induced Failure Mechanisms 95
C. Mechanically Induced Failure Mechanisms 101
D. Environmentally Induced Failure Mechanisms 102
References 106
CHAPTER 5. DEVICE MODELING 109
(W. Y. Jiang)
I. Types of Models 109II. Equivalent Circuit 110A. MESFET Equivalent Circuit 110
B. HEMT Equivalent Circuit 113III. Characterization and Parameter Extraction 114A. DC Characterization and Parameter Extraction 114
B. RF Characterization and Parameter Extraction 114
C. Large-Signal Characterization and Parameter Extraction 114
D. Noise Figure Characterization 116IV. Modeling Software 117A. Device Modeling Software 117
B. Processing Simulation Software 118V. Model Sensitivity 119A. Sensitivity Analysis 119
B. Temperature Effect 119
C. DC Bias Effect 120
D. Statistical Analysis 121
References 121
CHAPTER 6. MMIC DESIGN METHODOLOGIES & VERIFICATION 123 (C. Chen, S. Kayali, E. Rezek, and T. Trinh)
I. Foundry Documentation 123II. MMIC Simulation 124III. MMIC Layout 125IV. Typical Design Methodology 126V. Design for Reliability and Manufacturability 127Additional Reading 128
I. Test Structures 130A. Technology Characterization Vehicle 130
B. Standard Evaluation Circuits 131
C. Parametric Monitors 132II. Testability 134A. Wafer-Level Testability 134
B. MMIC-Level Tests 135
Additional Reading 136
CHAPTER 8. QUALIFICATION METHODOLOGIES 137 (S. Kayali, G. E. Ponchak, and R. Shaw)
I. Introduction 137II. Company Certification 139A. Technology Review Board 139
B. Conversion of Customer Requirements 141
C. Manufacturing Control Procedures 142
D. Equipment Calibration and Maintenance 143
E. Training Programs 143
F. Corrective Action Program 143
G. Self-Audit Program 143
H. Electrostatic Discharge Handling Program 144
I. Cleanliness and Atmospheric Controls 144 J. Record Retention 144
J. Inventory Control 145
K. Statistical Process Control 145III. Process Qualification 146A. Process Step Development 149
B. Wafer Fabrication Documentation 149
C. Parametric Monitors 149
D. Design-Rule and Model Development 151
E. Layout-Rule Development 151
F. Wafer-Level Tests 151
G. TCV and SEC Tests 151
H. Starting Materials Control 152
I. Electrostatic Discharge Characterization and Sensitivity 152IV. Product Qualification 153A. MMIC Design, Model, and Layout Verification 153
B. Thermal Analysis and Characterization 154
C. Electrostatic Discharge Sensitivity Tests 154
D. Voltage Ramp 155
E. Temperature Ramp and Step Stress 155
F. High/Low Temperature Tests 155V. Product Acceptance 155A. Stabilization Bake 156
B. SEM Analysis 163
C. Nondestructive Bond Pull Test 163
D. Visual Inspection 163
E. IR Scan 164
F. Temperature Cycling and Shock Screen 164
G. Mechanical Shock Screen 165
H. Constant Acceleration 165
I. Particle Impact Noise Detection 165
J. Burn-In 165
K. Leak Test 166
L. Radiographic 166
References 167
Additional Reading 167
CHAPTER 9. GaAs MMIC PACKAGING
I. Introduction 170 (G. E. Ponchak)A. Functions of Microwave Packages 172
B. Types of Microwave Packages 176
Additional Reading 180II. Die Attachment 181 (G. E. Ponchak)References 183III. Flip-Chip Package 184 (R. N. Simons)References 185IV. Multichip Module–Dielectric Package 187 (G. E. Ponchak)References 189V. Plastic Package 190 (R. N. Simons)References 192VI. Package Resonance and Field Leakage 194 (R. N. Simons)References 198Additional Reading 199VII. Hydrogen Poisoning of GaAs MMICs in Hermetic Packages 200 (A. Immorlica and S. Kayali)References 202
CHAPTER 10. RADIATION EFFECTS IN MMIC DEVICES 203 (C. Barnes and L. Selva)
I. Introduction 203II. Radiation Environments and Sources 203A. The Natural Space Radiation Environment 203
B. Other Radiation Sources 207
C. Radiation Shielding 209III. Radiation Effects in Semiconductor Devices 210A. Ionizing Radiation Effects 210
B. Displacement Damage Effects 216
C. Single Event Effects 219IV. Radiation Testing 223V. Radiation Effects in MMIC Devices and Circuits 227A. Ionizing Radiation Effects 227
B. Displacement Damage Effects 232
C. Single Event Effects 237VI. Conclusions 239References 240